3.1037 \(\int \frac{(a+i a \tan (e+f x))^{3/2}}{(c-i c \tan (e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=90 \[ -\frac{i (a+i a \tan (e+f x))^{3/2}}{15 c f (c-i c \tan (e+f x))^{3/2}}-\frac{i (a+i a \tan (e+f x))^{3/2}}{5 f (c-i c \tan (e+f x))^{5/2}} \]

[Out]

((-I/5)*(a + I*a*Tan[e + f*x])^(3/2))/(f*(c - I*c*Tan[e + f*x])^(5/2)) - ((I/15)*(a + I*a*Tan[e + f*x])^(3/2))
/(c*f*(c - I*c*Tan[e + f*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.127552, antiderivative size = 90, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.086, Rules used = {3523, 45, 37} \[ -\frac{i (a+i a \tan (e+f x))^{3/2}}{15 c f (c-i c \tan (e+f x))^{3/2}}-\frac{i (a+i a \tan (e+f x))^{3/2}}{5 f (c-i c \tan (e+f x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[e + f*x])^(3/2)/(c - I*c*Tan[e + f*x])^(5/2),x]

[Out]

((-I/5)*(a + I*a*Tan[e + f*x])^(3/2))/(f*(c - I*c*Tan[e + f*x])^(5/2)) - ((I/15)*(a + I*a*Tan[e + f*x])^(3/2))
/(c*f*(c - I*c*Tan[e + f*x])^(3/2))

Rule 3523

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist
[(a*c)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f,
m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*Simplify[m + n + 2])/((b*c - a*d)*(m + 1)), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rubi steps

\begin{align*} \int \frac{(a+i a \tan (e+f x))^{3/2}}{(c-i c \tan (e+f x))^{5/2}} \, dx &=\frac{(a c) \operatorname{Subst}\left (\int \frac{\sqrt{a+i a x}}{(c-i c x)^{7/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{i (a+i a \tan (e+f x))^{3/2}}{5 f (c-i c \tan (e+f x))^{5/2}}+\frac{a \operatorname{Subst}\left (\int \frac{\sqrt{a+i a x}}{(c-i c x)^{5/2}} \, dx,x,\tan (e+f x)\right )}{5 f}\\ &=-\frac{i (a+i a \tan (e+f x))^{3/2}}{5 f (c-i c \tan (e+f x))^{5/2}}-\frac{i (a+i a \tan (e+f x))^{3/2}}{15 c f (c-i c \tan (e+f x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 3.94144, size = 106, normalized size = 1.18 \[ \frac{a \cos (e+f x) (\cos (f x)-i \sin (f x)) \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)} (4 \cos (e+f x)-i \sin (e+f x)) (\sin (4 e+5 f x)-i \cos (4 e+5 f x))}{15 c^3 f} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[e + f*x])^(3/2)/(c - I*c*Tan[e + f*x])^(5/2),x]

[Out]

(a*Cos[e + f*x]*(Cos[f*x] - I*Sin[f*x])*(4*Cos[e + f*x] - I*Sin[e + f*x])*((-I)*Cos[4*e + 5*f*x] + Sin[4*e + 5
*f*x])*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]])/(15*c^3*f)

________________________________________________________________________________________

Maple [A]  time = 0.034, size = 71, normalized size = 0.8 \begin{align*} -{\frac{a \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) \left ( 4\,i+\tan \left ( fx+e \right ) \right ) }{15\,f{c}^{3} \left ( \tan \left ( fx+e \right ) +i \right ) ^{4}}\sqrt{a \left ( 1+i\tan \left ( fx+e \right ) \right ) }\sqrt{-c \left ( -1+i\tan \left ( fx+e \right ) \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(f*x+e))^(3/2)/(c-I*c*tan(f*x+e))^(5/2),x)

[Out]

-1/15/f*(a*(1+I*tan(f*x+e)))^(1/2)*(-c*(-1+I*tan(f*x+e)))^(1/2)*a/c^3*(1+tan(f*x+e)^2)*(4*I+tan(f*x+e))/(tan(f
*x+e)+I)^4

________________________________________________________________________________________

Maxima [A]  time = 1.82292, size = 151, normalized size = 1.68 \begin{align*} \frac{{\left (-3 i \, a \cos \left (\frac{5}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) - 5 i \, a \cos \left (\frac{3}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 3 \, a \sin \left (\frac{5}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 5 \, a \sin \left (\frac{3}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )\right )} \sqrt{a}}{30 \, c^{\frac{5}{2}} f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(3/2)/(c-I*c*tan(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

1/30*(-3*I*a*cos(5/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 5*I*a*cos(3/2*arctan2(sin(2*f*x + 2*e), co
s(2*f*x + 2*e))) + 3*a*sin(5/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 5*a*sin(3/2*arctan2(sin(2*f*x +
2*e), cos(2*f*x + 2*e))))*sqrt(a)/(c^(5/2)*f)

________________________________________________________________________________________

Fricas [A]  time = 1.3339, size = 247, normalized size = 2.74 \begin{align*} \frac{{\left (-3 i \, a e^{\left (6 i \, f x + 6 i \, e\right )} - 8 i \, a e^{\left (4 i \, f x + 4 i \, e\right )} - 5 i \, a e^{\left (2 i \, f x + 2 i \, e\right )}\right )} \sqrt{\frac{a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} e^{\left (i \, f x + i \, e\right )}}{30 \, c^{3} f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(3/2)/(c-I*c*tan(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

1/30*(-3*I*a*e^(6*I*f*x + 6*I*e) - 8*I*a*e^(4*I*f*x + 4*I*e) - 5*I*a*e^(2*I*f*x + 2*I*e))*sqrt(a/(e^(2*I*f*x +
 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*e^(I*f*x + I*e)/(c^3*f)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))**(3/2)/(c-I*c*tan(f*x+e))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (i \, a \tan \left (f x + e\right ) + a\right )}^{\frac{3}{2}}}{{\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))^(3/2)/(c-I*c*tan(f*x+e))^(5/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(f*x + e) + a)^(3/2)/(-I*c*tan(f*x + e) + c)^(5/2), x)